
Approximate inverse spectral transform for the Korteweg-de Vries equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 1939

(http://iopscience.iop.org/0305-4470/18/11/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 1939-1944. Printed in Great Britain 

Approximate inverse spectral transform for the 
Korteweg-de Vries equation 
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Dipartimento di Fisica, Universiti di Roma ‘La Sapienza’, P.zale A Mor0 2, 00185 Roma, 
Italy 

Received 25 July 1984 

Abstract. The numerical solution of the inverse spectral transform for the Korteweg-de 
Vries equation is rather time consuming and can give rise to instabilities. Motivated by 
such drawbacks, the authors propose a formalism which allows one to derive in closed 
form the solution of the Cauchy problem for the Korteweg-de Vries equation for short 
times. Such a solution is obtained by going over to a Pad6 approximant of the time-evolved 
reflection coefficient. 

1. Introduction 

As is well known, for linear partial differential equations (PDES) of the evolution type, 
U ,  = F (  U ,  U,,, U,,, . . .), and for rapidly decreasing initial data, the solution of the Cauchy 
problem can be achieved through the (direct and inverse) Fourier transform (FT). 
Moreover, it is now established that the Cauchy problem can also be solved for a large 
class of nonlinear PDES (NPDES) (Gardner et al 1967, Zakharov and Shabat 1971, 
Ablowitz et a1 1974, Calogero and Degasperis 1982) through a nonlinear extension of 
the FT, namely the so-called (direct and inverse) spectral transform (DST and ET). 

Let us consider, for instance, the Kdv equation: 

U ,  = U,, - ~ u u , .  

-$,, + U$ = k2$  

(1) 

(2) 

One can associate with it the spectral problem (SP) 

which, given U belonging to L: (Deift and Trubowitz 1979), allows us to define uniquely 
the spectral data: 

S [ u ] = { R ( k ) ,  k E R ; p j , p ,  ( j = l , 2 , .  . . ,  N)} (3)  
where R (  k) is the reflection coefficient, - p j  are the discrete eigenvalues and p j  are the 
corresponding wavefunction normalisation coefficients. For the explicit definition of 
these quantities we refer to Calogero and Degasperis (1982, p 18). Starting from an 
initial datum u o ( x ) ,  the DST (2) gives the spectral data So= S [ u , ]  which, if uo evolves 
according to the NPDE ( l ) ,  evolves according to a linear ordinary differential equation 
(LODE), which can be explicitly integrated. Finally, the solution of the Cauchy problem 
can be accomplished through the IST which, in this case, consists essentially of a linear 
integral equation of Fredholm type. 
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The procedure described above can be summarised in the following scheme: 

DST 
4x9 0) = uo(x) - S [ U O l  

I 
i N P D E  ]LODE 

IST 
u(x ,  t )  - S[u] .  

However, while in the DST, apart from a large class of exact solutions (see, for instance, 
Calogero and Degasperis (1982, pp 418-44)), one has at his disposal an effective and 
fast numerical algorithm (Osborne 1984), the solution of the IST is in general more 
cumbersome, the numerical algorithm is slow and can give rise to instabilities. Such 
difficulties can be by-passed if one is just interested in the asymptotic (i.e. ‘large t and 
x’) behaviour of the solution (Ablowitz and Segur 1977). 

In many instances, however, the knowledge of the solution for small 1 could be 
relevant: this can be accomplished by going over to the Pad6 approximant series of 
the evolved spectral data (Baker 1981). In fact, in this case, the reflection coefficient 
is a rational function of the spectral variable and thus the IST can be completely solved 
(Sabatier 1984). To do so, Sabatier (1984), following Calogero and Degasperis (1982), 
had to reconstruct the potential separately for x < 0 and x > 0. 

In the following we shall derive a procedure such that this splitting is not necessary, 
at the expense of the formal introduction of a 6 function in the origin, which for 
reflection coefficients sufficiently well behaved, disappears. Closely related results have 
been derived, with a different aim in mind, by Pechenick and Cohen (1981), and Moses 
and Prosser (1984). 

2. Rational reflection coefficients 

As is well known (Marchenko 1968), the IST for the SP (2) is functionally stable, so 
that a good Pad6 approximant of a given spectrum (3) provides a good approximation 
for the corresponding potential. 

The Pad6 approximant of a given reflection coefficient R ( k )  obtains, at least in its 
simplest version, from the Taylor expansion around the origin: 

m 

R ( k ) =  c , k ’ - P , ( k ) / Q , ( k ) . . R , ( k )  (4) 
l = O  

where 
m 

P,,,(k) = -1 + 2 alk’ Q n ( k )  = 1 + 2 blk’. 
/ = 1  I = 1  

We notice that the structure of P, and Qn guarantees the condition R,,(O) = -1. 

coefficient by the property: 
It is easy to see that the reality of the potential, expressed in terms of the reflection 

R ( k ) =  R * ( - k * )  

which implies in (4) c?=(-l)’c/ ,  is preserved by the Pad6 approximant R,(k) and 
implies 

bl = (-1)’bT al = (-1)‘~:. ( 5 )  
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Moreover R ( k ) ,  being obtained from a well behaved potential u o ( x ) ,  must vanish 
asymptotically in k :  this implies that, in any R p ( k ) ,  we must have n > m. Finally, the 
property ( 5 )  easily impliest that the zeros of P, and Qn are either purely imaginary 
or symmetric with respect to the imaginary k axis. 

As is well known (Neugebauer and Meinel 1983) the reconstruction of the potential 
from the spectral data can be carried out in two steps: first, one obtains the potential 
and the wavefunction corresponding to the continuous part of the spectrum (in our 
case, corresponding to the poles of R , ( k )  lying in the lower half of the complex k 
plane) and then by successive Backlund transformations (BTS) one dresses it up with 
poles in the upper half of the complex k plane (which may or may not correspond to 
bound states). Thus it is appropriate to write R , ( k )  in the following form: 

R p ( k )  = R c ( k ) R b ( k )  ( 6 )  

where R , ( k )  has poles in the lower half plane and R b ( k )  has poles in the upper half 
plane. Assuming Q n ( k )  has s zeros in the upper half plane, so that Q f l ( k ) =  
Q?) (k )Qkl ) s (k ) ,  where Q ? ) ( k )  has r zeros in the upper (lower) half plane, we have 

In order to obtain the explicit form of the potential on the whole x axis corresponding 
to R , ( x ) ,  we write it down as a sum of (simple) partial fractions: 

f l  

Regj>O; d j = l  
j=1 

48, ~ , ( k ) = - i  
j = l  k+igj 

dj, gj being definite functions of the coefficients cI appearing in equation (4). 

Marchenko equation: 
Starting from (8) one can evaluate the kernel M ( x )  of the Gel'fand-Levitan- 

m 

K c ( x ,  Y )  + M A X  + Y )  + 1 dz Kc ( x ,  z) Mc( z + Y )  = 0 ( Y  3 X )  

whose solution is 

where w k  ( k  = 1, .  . . , n - 1 )  are the strictly positive roots of the equation 

and the functions A ( x ) ,  D k ( x )  are given as ratios of determinants by the formulae: 

A = det A'"/det A Dk = det A(&+l)/det A (9) 
where the matrices A, A(') are given by 

t This is proved just by setting k = iy and noting that P,, ,(y) and Q , ( y )  have real coefficients and thus real 
or complex conjugate zeros. 
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We recall now that, according to the results of Neugebauer and Meinel (1984), the 
potential corresponding to the reflection coefficient R,(k) (6) is given by 

u,(x) = (-l)s[uc(x)-2i det ?/det v] 

where s is the number of poles of R,(k) in the upper half of the complex k plane and 
the 2s x 2 s  matrices ? and V are expressed by the formulae: 

v,,, = 1 Vp2 = (a,,)-1 v,.,+2 = kPVP., 

e,,, = VP,,(1 - ~2s .q )+(kp) s~q ,*s .  

The functions a,,( x )  are the so-called intermediate wavefunctions, depending only on 
the solution of the Schrodinger equation (2) corresponding to the potential U = u,(x) 
and to k2 = k; where kp ( p = 1, , . . , s )  are the zeros of Q?’( k)  which, as we noticed 
before, are located in the upper complex k plane and are either purely imaginary or 
symmetric with respect to the imaginary axis. The intermediate wavefunction is given 
by 

a,(x) = (d/dx)[ln(g$‘+’(x, k,)+ $(+)(x, -k,))]-ik,, (11) 

with 

sin k,,x * - I  
$“’(x, k,) = exp( ikg )  -28(-x) A(x)-+ Dl(x)  

kp / = I  

sin( k, + i q ) x  sin( k, - iwl)x 
- Rc( - i q )  ’( k,,+iwl k,, - iw, 

It is worthwhile noticing that equation (1 1) can be expressed completely in algebraic 
form through the function A(x), D k ( x )  (equation (9)) and A(x), &(x)  (equation 
( lo)) ,  and moreover that, even if formula (12) contains a 8 function, equation (11) 
does not contain any 6 function in the origin. 

i One can check that, if R , ( k )  decays faster than k - ’  as lkl +CO,  the coefficient of the 8 function vanishes. 
This same result has been obtained independently by Pechenick and Cohen (1981) and Moses and Prosser 
(1984). 
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The coefficients T~ appearing in (1 1) are related to the normalisation coefficients 
pp (3) of the eigenfunctions $“’(x, k,) and to the value of the reflection coefficient 
R,( k) at the points kp when, as is the case here, the reflection coefficient is analytic, 
except for a finite number of poles, in the whole complex k plane. Thus, we have 

(13) 

and pp = 2ikpR,(kp) if kp corresponds to a bound state and otherwise pp = 0. Condition 
(13) thus implies T~ = O  whenever kp corresponds to a bound statet. 

For completeness and for further use it is worthwhile noticing that the condition 
vp = 0 (in agreement with Calogero and Degasperis (1982)) also holds whenever 
Im kp < 0. 

3. Time evolution via PadC approximants 

It is well known (Gardner et al 1967, Calogero and Degasperis 1982) that, when the 
potential U of the Schrodinger equation (2) evolves according to the Kdv equation, 
the corresponding evolution of the spectral data is given by 

Hence, of course, a rational dependence on k of the reflection coefficient is not preserved 
by the time evolution; this drawback, however, can easily be overcome, at least for 
small times, as pointed out in the introduction, by replacing R(k, t )  by its PadC 
approximant. The simplest Pad6 approximant to equation (14) is easily seen to be 

the difference IR, - RI being O( t ’ ) .  
By taking into account the integral Wronskian relations connecting the time evol- 

ution of the potential (Calogero and Degasperis 1982, p 90) we easily derive the NPDE 

for U which has the exact time evolution of the reflection coefficient given by (15): 

(16) 

Formula (16) clearly shows that, for small times, the NPDE (16) approximates the Kdv 

equation (1). 

I 2  3 (1 - 2 t  L )U, = Lu, = U,, - ~ u u , .  

We notice that the factor R,(k, t )  can be factorised as 

k - k ( t )  R,(k, t )  = fl 
, = I  k+k,( t )  

where two of the kj are symmetric with respect to the imaginary axis in the upper half 
complex k plane while the third is purely imaginary in the lower half complex k plane, 

t Equation (13) corrects the statement by Calogero and Degasperis (1982, pp 378-85). 
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in such a way that 

Due to the structure (17) R , ( k )  can be treated in the same manner as R , ( k )  (7) even 
if it also has poles in the lower half planet. Thus R , ( k )  can be included in R b ( k )  by 
adding three time-dependent poles to the existing s poles in the ‘zero time’ Pad6 
approximant. 

4. Conclusions 

Of course, the type of Pad6 approximant we have used is suitable for expressing the 
behaviour of the reflection coefficient for small k, and thus the behaviour of the potential 
for large x. For a more detailed reconstruction of the potential one would also need 
the Pad6 approximant representation of R ( k )  for large k, and then the appropriate 
matching between the two regions. Naturally both Pad6 approximants can be handled 
by the technique introduced here. In such a way one can think of describing the 
small-time behaviour of the solution of the Kdv equation for a generic initial datum. 

Through this technique one can also try to clarify the small-time behaviour of the 
background radiation solutions of some ‘pathological’ NPDE with x dependent 
coefficients (Calogero and Degasperis 1982, pp 234-58). Work is in progress in both 
directions. 
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